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Abstract

Background: In recent years the field of movement ecology has been revolutionized by our ability to collect
high-accuracy, fine scale telemetry data from individual animals and groups. This growth in our data collection
capacity has led to the development of statistical techniques that integrate telemetry data with random walk models
to infer key parameters of the movement dynamics. While much progress has been made in the use of these models,
several challenges remain. Notably robust and scalable methods are required for quantifying parameter uncertainty,
coping with intermittent location fixes, and analysing the very large volumes of data being generated.

Methods: In this work we implement a novel approach to movement modelling through the use of multilevel
Gaussian processes. The hierarchical structure of the method enables the inference of continuous latent behavioural
states underlying movement processes. For efficient inference on large data sets, we approximate the full likelihood
using trajectory segmentation and sample from posterior distributions using gradient-based Markov chain Monte
Carlo methods.

Results: While formally equivalent to many continuous-time movement models, our Gaussian process approach
provides flexible, powerful models that can detect multiscale patterns and trends in movement trajectory data. We
illustrate a further advantage to our approach in that inference can be performed using highly efficient,
GPU-accelerated machine learning libraries.

Conclusions: Multilevel Gaussian process models offer efficient inference for large-volume movement data sets,
along with the fitting of complex flexible models. Applications of this approach include inferring the mean location of
a migration route and quantifying significant changes, detecting diurnal activity patterns, or identifying the onset of
directed persistent movements.
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Introduction
Animal movement is a fundamental ecological process
that influences the dynamics of ecosystems across mul-
tiple spatiotemporal scales. Movement determines indi-
vidual fecundity and survival, affects population dynam-
ics and persistence, and alters the trophic interactions
between species [1, 2]. Altered animal movement pat-
terns are also an important indicator of the impacts of
climate change and the effects of increased anthropogenic
land-use [3].
Over recent years there has been a rapid advance in our

ability to collect data on the movement behaviour of many
animal species [4, 5] and this has led to the development
of sophisticated statistical methods to analyse these data
[6]. Statistical methods usually model animal movement
as some form of random walk which can include direc-
tional persistence (correlated random walk), or different
forms of biases [7, 8], an approach which enables inference
of model structure and parameters.
Broadly speaking, random walk models may be divided

into continuous-time and discrete-time models. Discrete-
time models are intuitive and readily interpretable but
results are often sensitive to the choice of discretiza-
tion step. Continuous-time movement models are able
to cope with irregular sampling intervals and likely bet-
ter represent the dynamic decision processes of most
organisms. Furthermore, continuous time models usu-
ally make it easier to deal with measurement error
[9].
Both approaches lead to significant computational chal-

lenges when fitting to data. Remote telemetry devices
generate large, high-frequency data sets and statistical
methods must be scalable and able to process and analyze
these data sets on practical time scales.
Within the field of machine learning there has tradi-

tionally been a focus on developing methods that can be
applied at scale. While historically this focus has often
come at the cost of formal uncertainty quantification and
interpretability, modern machine learning methods com-
bine scalable algorithms with probabilistic learning from
data [10]. A popular machine learning technique for the
analysis of time series data is Gaussian process regression
[11] (also known as kriging within the spatial statistics
community).
Gaussian processes are powerful tools for investigating

structure and patterns in time series data [12, 13] and have
been recently applied to animal movement [14]. In stan-
dard Gaussian process (GP) regression we begin with a
series of n input-ouput datapoints (ti, xi) for i = 1, . . . n
and assume a relationship between input and output of the
form,

x(t) = f (t) + ε (1)

where ε ∼ N (0, σ 2
m) is a white additive noise term, nor-

mally associated with measurement error, and f (t) is a
latent (unobserved) function.
The aim is then to infer a posterior distribution over

possible functions f (t) given the observed data. This is
achieved by placing a Gaussian process prior on the latent
function

f (t) ∼ GP
(
m(t),K(t, t′)

)
(2)

where m(t) is a mean function and K(t, t′) is a covariance
function (or kernel). By assuming that the latent func-
tion is a realization of a Gaussian process we can make
use of Bayes’ rule and Gaussian identities to calculate the
posterior distribution over functions once data has been
observed [11].
The choice of covariance functionK(t, t′) and its param-

eters plays a key role in the performance of Gaussian
process regression. Learning from data for GP regression
involves maximizing the marginal likelihood of the data
over the covariance kernel hyperparameters and observa-
tion noise, approximating the posterior distribution with
variational basedmethods, or sampling from the posterior
with Markov chain Monte Carlo.
Placing a Gaussian process prior on the latent func-

tion f (t) is equivalent to assuming the observations are
generated from a process that can be written as a lin-
ear stochastic differential equation (SDE); it can be shown
that the choice of covariance kernel specifies the form
of the equivalent SDE for the generating process [15]. In
the context of animal movement this means that random
walk movement models such as those based on Brow-
nian motion or the Ornstein-Uhlenbeck process [8] are
formally equivalent to Gaussian processes [16]. For exam-
ple, for an Ornstein-Uhlenbeck process, the appropriate
covariance function is the Matérn 12 function (commonly
known as the exponential covariance function),

KOU(t, t′) = σk exp
(

−|t − t′|
L

)
(3)

where L is the reciprocal of the mean reversion parameter
(see [17] Section 6.4 for a discussion of the effect of L, σk
on the resulting function f (t)).
Recent efforts in animal movement modeling have

focused on dynamic models in which the parameters of
the process change over time. The dominant approach
in this context is to assume that the observed move-
ments of animals are driven by discrete behavioural states
(eg. foraging, migrating, resting) that the animal switches
between at different times [18–20]. For discrete-time
models, the usual approach belong to the class of hid-
den Markov models (HMMs). An HMM is a time series
model that comprises two components, an observable
series and an underlying, non-observable state sequence.
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The observed data are taken to be conditionally inde-
pendent given the states and are generated by so-called
state-dependent distributions. The state sequence is mod-
eled as a Markov process usually assumed to be of first
order, which means that the probability of state occur-
rences at time t+1 depends only on which state the chain
is in at time t [21, 22].
An equivalent discrete-state process can be modelled

using Gaussian process regression either via the intro-
duction of change points [23] or by directly employing a
hidden Markov model [24]. However, in many cases we
expect that changes in movement would be more gradual,
for example as individuals respond to their environment
or internal condition as they move around [25–27]. In
this work we employ a continuous state approach through
the use of a non-stationary Gaussian process [28], where
the parameters of the covariance kernel (sensu movement
model) change continuously over time.
We apply the non-stationary Gaussian process approach

to the analysis of simulated and real animal movement
data and show that this allows us to infer continuous latent
behavioural states and encode multiscale periodic models
that can be rigourously and efficiently fit to large data sets.

Methods
Our regression model follows the 2-dimensional version
of Eqs. 1 and 2, where we model each output of the multi-
variate Gaussian process as two univariate GPs. This can
be generalised to multivariate GPs where the correlation
between outputs is explicitly modelled, [29, 30] however
for animal movement data the difference is likely to be
negligible.
We further replace the stationary kernel defined by Eq. 3

with a non-stationary version of theMatérn 12 covariance
function [31],

KNS(t, t′) =
√
2σ 2(t)σ 2(t′)L(t)L(t′)

L(t)2 + L(t′)2

× exp

⎛

⎝−
√

2(t − t′)2
L(t)2 + L(t′)2

⎞

⎠

(4)

so that the parameters of the kernel vary as a function of t.
Following, [28] we model the latent lengthscale and ker-

nel amplitude using lower level Gaussian processes so
that,

σ̃ (t) ∼ GP
(
μσ ,Kσ (t, t′)

)
L̃(t) ∼ GP

(
μL,KL(t, t′)

)

(5)

where σ̃ , L̃ undergo an exponential transformation to
obtain positive values for σ and L.
In relation to previous approaches that employ an

Ornstein-Uhlenbeck (OU) process to model position or

velocity [32, 33], conceptually our framework replaces the
standard definition of such a process,

dx = −ν (x − m)dt + η dWt (6)

where ν is the mean reversion rate,m is the mean value, η
is the noise amplitude, and Wt is a Wiener process, with
an OU process with time-varying parameters,

dx = −ν(t) (x − m(t)) dt + η(t) dWt (7)

where the parameters of the covariance function above
can be related to the parameters ν(t), η(t) as in the sta-
tionary case [34],

Ł(t) ≈ 1
ν(t)

, σ(t)2 ≈ η(t)2

2ν(t)
. (8)

We further model the mean function of the process as

m(t) ∼ GP
(
0,Km(t, t′)

)
(9)

and within our framework, we are free to assume any, all,
or none of the parameters are dynamically varying, where
in the latter case we recover a standard OU process.
The covariance kernels of the lower level GPs con-

trol the smoothness and structure of the latent functions.
Appropriate choice of these covariance kernels allows us
to encode structure into the models, such as periodicity,
and combine kernels together [35], for example to model
a periodic movement pattern (representing an annual
migration) with a long term trend (representing a shifting
migration route).
Once the kernels of the lower level GPs have been

defined the unnormalised posterior probability of the tra-
jectory data can be calculated as,

N
(
x | m,KNS + σ 2

mI
)
N (m | 0,Km) ×

N
(
L̃ | μL,KL

)
N (σ̃ | μσ ,Kσ )P(θ) (10)

where x is the matrix of data points, σm is the measure-
ment uncertainty, I is the identity matrix, θ is a vector
containing the hyperparameters of the lower level Gaus-
sian processes contained in the functionsm, σ and L, and
P(θ) is the prior probability over the hyperparameters.
To implement the model we use TensorFlow Probability

[36, 37], a machine learning library designed for prob-
abilistic modeling on computational hardware such as
GPUs or TPUs. For sampling from the posterior distribu-
tion of latent functions and parameters we use an adaptive
version of the Metropolis-adjusted Langevin algorithm
(MALA) [38], a Markov chain Monte Carlo (MCMC)
algorithm that makes use of the gradient of the target
probability density function when generating proposals
and hence is a more efficient sampler.
As we are interested in learning about the latent func-

tion values, i.e. the parameters of the movement process,
we determine the latent functions at m support points
where m � n and the locations of the m points are
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chosen to be evenly distributed across the domain of the
latent function with the number of points chosen so that
the distance between points is less than the correlation
lengthscale of the latent function. To improve computa-
tional efficiency and avoid theO(n3) scaling with data size
typically associated with estimation of GP hyperparame-
ters [11] we firstly make use of the fact that movement
data consists of trajectories of individual animals that may
be considered conditionally independent given the latent
movement parameters. This means our method is at most
O(k3) where k is the number of data points in the largest
individual trajectory.
For high-frequency, long term data sets we further seg-

ment individual trajectories into smaller sections of length
j data points and use a series of local Gaussian processes
to approximate the full trajectory. This approach, also
known as amixture of Gaussian process experts [39], gives
an accurate approximation provided the domain of the
local GP is large compared to the lengthscale of the pro-
cess being modelled and the data is relatively uniform
[40]. We therefore approximate a single long trajectory
of length k as a sequence of separate smaller trajecto-
ries of length j, and as a result the computational time
for inference is greatly reduced. For example, given a tra-
jectory consisting of hourly GPS fixes over two years, we
would have 17280 data points and inference would pro-
ceed in O(172803) time. Instead, we divide the trajectory
into 3 month segments which are conditionally indepen-
dent given the latent movement parameters and inference
then proceeds in O(8 × (21603)) time.
To evaluate our approach we firstly generate synthetic

trajectory data with dynamic, non-stationary movement
parameters. We then apply our inference framework and
compare inferred values with our known parameters. We
next apply the methodology to a real dataset concern-
ing the movement dynamics of free-roaming sheep in
Patagonia.

Results for simulatedmovement data
Through the use of synthetic data we assess two potential
scenarios where our methods will be applicable. We firstly
detect daily activity patterns in a simulated individual
organism, we then infer changes to a seasonal migration
route where an annual movement pattern is shifting over
a longer timescale.

Periodic activity patterns
A random walker is simulated as a 2-dimensional
Ornstein-Uhlenbeck process with a time-varying ampli-
tude parameter which models an animal moving around
a home-range with different activity levels (see Appendix
for details). In this simulation we model an individual that
has an increasing period of high-activity (e.g. foraging)
beginning around 5am and reducing more sharply late

afternoon. This gives rise to the synthetic data set shown
in Fig. 1a. From this observed data the challenge is to infer
the underlying, time-varying movement parameters.
As we are investigating a daily activity pattern, we will

encode this into the covariance kernel of the latent pro-
cess for the OU amplitude. To do so, we will implement a
periodic kernel [41] for the amplitude kernel defined as

Kσ (t, t′) = a exp
(−2 sin2(π |t − t′|/P)

l2

)
(11)

where P defines the period which we will fix to be 24
hours. The parameters l and a are the length scale and
amplitude of the lower level Gaussian process that con-
trol the persistence of motion and ranging area, and are
inferred along with the latent function values.
All parameters and latent functions are sampled from

using the MALA sampler. We therefore infer the three
hyperparameters associated with the periodic amplitude,
μσ , a, l, the constant lengthscale μL, and 40 latent func-
tion values at the support points.
We took 40000 steps that are thinned to give 2000

samples, following a burn-in period of 5000 steps and
run 4 independent chains. Potential scale reduction fac-
tors (PSRF) [42] were calculated to assess convergence
and mixing with the maximum value over all parameters
calculated as 1.08. Results are shown in Fig. 1. Here a sin-
gle sample represents a sample from a distribution over
functions, as well as the parameters of the model. Hence
we infer the functional form of the amplitude parame-
ter throughout the day. As we have simulated the random
walk using an Ornstein-Uhlenbeck process we are able to
accurately recover the true latent function (Fig. 1c).

Altered migration routes
We next simulate a longer term movement process in
which a single individual follows a seasonal migration
between breeding grounds and a wintering area [43]. We
simulate a migration of this type by employing an oscil-
lating mean location with an annual frequency. We also
include a slowly shifting Northern range and seek to
detect the annual movement pattern and the long term
trend. (Full details of the synthetic data generation can be
found in the Appendix and an example trajectory is shown
in Fig. S1.)
To infer the properties of the movement process we

combine periodic and squared exponential kernels to cre-
ate a periodic kernel that can slowly vary over time [35],

Km(t, t′) = a exp
(

− (t − t′)2

2λ2

)

exp
(−2 sin2(π |t − t′|/P)

l2

)
.

(12)
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Fig. 1 Detection of periodic activity pattern. (a) Coordinates of the simulated individual. The amplitude of the randommovement increases for the
same period each day. (b) Samples from the posterior. Using Markov chain Monte Carlo (MCMC) sampling we can sample from the posterior
distribution over functions, hence we can infer the latent activity levels as a function of time of day. (c) Once we have taken sufficient samples we
can calculate the posterior mean (red line) and 95% credible interval (shaded region). The true latent function is shown as a black dashed line

We set the period to be 1 year and the lengthscale of
the squared exponential to be 5 years. In principle these
parameters could be inferred from the data as well, how-
ever wemay expect a strong and reliable prior for seasonal
drivers of movement patterns and the timescale over
which longer term changes occur.
For inference, we ran 4 independent chains of 80000

steps each then discarded a burn-in period of 40000
steps. The 40000 steps following burn-in are thinned
to leave 2000 samples from the posterior (maximum
PSRF 1.17). Results from the sampler are shown in
Fig. 2. As before we can draw samples of the underly-
ing latent function, which in this example describes the
average migration route. We may also estimate the loca-
tions of wintering and breeding grounds across years
and formally quantify the uncertainty in these estimates
(Fig. 2b).

Case study: free-roaming sheep in Patagonia
Finally, we apply our methods to empirical data col-
lected from GPS collars attached to 27 sheep ranging
freely in Patagonia. Sheep movement data was collected
at the Pilcaniyeu experimental range station from the
Argentine National Institute for Agropecuary Technology
(70◦ 35′21′′W, 41◦ 01′42′′S) located in the western dis-
trict of the Patagonian steppe. The 27 Merino ewes were
equipped with GPS collars (CatLog-B, Perthold Engi-
neering, www.perthold.de; USA) programmed to register
locations every 10 minutes over a 2-month period and
allowed to freely roam in a paddock of 700 hectares,
resulting in 225,953 data points. Full trajectories were split
into segments of 1000 data points (approximately 7 days)
and we calculated the velocity of individual sheep at each
time point using a finite difference of successive position
measurements.

www.perthold.de
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Fig. 2 Detection of shifting migration patterns. (a) Samples from the posterior distribution of the mean migration route. Samples are shown for the
average North-South location at each point during the year for year 1 (blue) and year 7 (red). (b) Average location of the summer (red) and winter
(blue) areas along with 95% credible intervals. The true value increases from 8 to 10 and is shown in Fig. S1

We assume all individuals adopt similar behaviours and
use our framework to investigate the daily behavioural
patterns of the sheep. We use an OU process to model the
velocity of individual sheep with varying amplitude and
lengthscale that follows a 24-hour period. Hence, Eq. 7
now models velocity and not location, and the covariance
kernel of the lower level Gaussian processes is given by,

Kσ (t, t′) = σσ exp
(−2 sin2(π |t − t′|/P)

l2σ

)
(13)

KL(t, t′) = σL exp
(

−2 sin2(π |t − t′|/P)

l2L

)

(14)

where P = 24. To determine the kernel hyperparameters
of the latent GPs, we minimize the negative log-likelihood
of the model using the Adam optimizer [44] on a sub-
set of the data. We then fix these hyperparameters to the
optimal values and sample from the posterior distribution
of the latent functions and the measurement error using
the adaptive MALA algorithm. Note, it is possible to sam-
ple from all parameters of the model, including the kernel
hyperparameters but in our tests this resulted in slowmix-
ing of the chains andmeant convergence was not achieved
within reasonable timescales given the size of our dataset.
We ran chains of 25000 steps each. The first 20000

steps were used as burn-in during which time the
algorithm adapted the step size and proposal distribu-
tion. Following burn-in the remaining 5000 steps were
thinned and every tenth sample retained. Each chain took
approximately 14 hours to run on a Tesla V100 GPU.
To check for convergence we calculated potential scale
reduction factors and report effective sample sizes (see
Figs. S2 and S3).

Inferred latent movement parameters are shown in
Fig. 3. These results reveal persistent, high-amplitude
movements occur between noon and 11pm, with two clear
activity peaks likely representing transit to and from for-
aging grounds. We also infer the measurement error due
to the devices and the posterior distribution of the veloc-
ity estimate error is shown in Fig. S4. When inferred
velocity is low any movements are attributed to measure-
ment error. This results in higher uncertainty in these
periods although this is only visible when examining the
untransformed latent functions as shown in Fig. S5.
Our framework is able to characterise a clear activity

pattern in the flock and reveals the daily dynamics of feed-
ing and encampment. To validate the model we perform
posterior predictive checks by comparing the distribu-
tions of steps and turns from the discretized empiri-
cal data and simulated data created using the inferred
time-varying velocity model.
Results comparing the step-and-turn characteristics of

simulated trajectories with real trajectories can be found
in Fig. S6. These results show our model accurately cap-
tures the aggregate distribution of step sizes but there is
lower variability and an excess of reversals in the empirical
data. The lack of reversals is likely due to a combina-
tion of the momentum that is inherent in continuous time
velocity models [9], along with the effects of environmen-
tal features and site fidelity in the sheep, factors that are
absent in our model.

Discussion
In recent years, the field of movement ecology has
been transformed by the availability of accurate, high-
frequency telemetry data. Despite this availability of data,
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Fig. 3 Daily activity patterns of free-roaming sheep. Posterior mean and 95% credible intervals (shaded region) are shown. (a) Inferred values for the
correlation length of the velocity of all individuals. (b) Inferred values for the amplitude of the velocity for all individuals

we are still left with the significant challenge of infer-
ring the dynamics of large scale ecological processes from
small numbers of collared individuals.
Amajor component of this challenge arises because ani-

mal movement is inherently a complex, multiscale process
[45], that is driven by periodic drivers [46], environmen-
tal cues [47], social interactions [48, 49] and individual
memory [50, 51]. Aside from this complexity, statistical
difficulties arise due to the autocorrelated nature of move-
ment data. Movement models account for autocorrelation
through the use of random walk models [33, 52, 53] and
much effort has beenmade to developmethods to fit these
models to movement data [6].
Learning from large scale datasets is the primary goal of

many machine learning methods and the rapid growth of
ecological data has led to machine learning being increas-
ingly viewed as an essential component of the ecolo-
gist’s toolbox [54, 55]. Traditional applications of machine
learning have focused on tasks where formal uncertainty
quantification is not a main aim, such as computer vision
tasks [56] or the classification of accelerometer data [57].
However, probabilistic machine learning methods [58],
such as Gaussian processes, offer a way to analyse data,
infer parameters, and quantify uncertainty within a non-
parametric Bayesian framework.
There are several advantages to applying these tech-

niques to animal movement modelling. Practically speak-
ing, machine learning libraries are scalable to large
datasets, well-supported by a community of researchers,
and run on modern HPC hardware. Deep learning
libraries such as TensorFlow [37] use automatic differenti-
ation thatmakes calculating the gradients of the likelihood
with respect to model parameters straightforward. This

facilitates optimisation of parameters to find maximum
likelihood estimates, as well as more efficientMonte Carlo
sampling algorithms, such as Hamiltonian Monte Carlo
[59] sampling or the Metropolis-adjusted Langevin algo-
rithm [60] used here. Gaussian process models can also be
implemented in many other statistical software packages,
such as STAN or JAGS, meaning it would be relatively
straightforward to implement the method we describe
here using generic statistical libraries.
In our approach, we model both the movement process

and the dynamic parameters of themovement as Gaussian
processes. This can be considered a continuous state ver-
sion of a hidden Markov movement model [18, 21] with
the potential advantage that the number of behavioural
states does not have to be specified a priori. Furthermore,
assuming discrete behavioural states may impose lack of
flexibility to the wide range of behaviours that animals can
display.
Continuously varying movement states may also be

achieved through time–warping [16], however our
approach is arguably more interpretable as the parameters
of the covariance kernel have clear biological meaning,
while the hierarchical Gaussian process allows full propa-
gation of uncertainty between layers. This approach may
also be extended to include movement parameters that
depend on environmental features as well as, or instead of,
being driven by temporal patterns.
Fitting a model with smoothly varying parameters

will be appropriate for situations where animals adopt
a spectrum of different behaviours rather than switch-
ing between distinct, stereotyped behavioural modes.
This would include movement behaviours that are driven
by continuous variables such as temperature, vegetation
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quality, or water availability [61] that could either be
included in the model as explicit covariates, or influence
behaviour via seasonal or diurnal temporal patterns.
The computational complexity of Gaussian processes

scales with the third power of the data set size. To deal
with this issue, we have segmented the configuration
space into local regions and have fitted a local GP to
each. This is not just a simple heuristic, but improves
the model flexibility in various respects, as previously
discussed in the Statistics literature (see e.g. [62] and
Chapter 9 in [63]).Various alternative and complementary
methods have been proposed in the literature for dealing
with the cubic scaling issue. For example, large classes of
Matérn covariance functions can be approximated to arbi-
trary precision via Gaussian Markov random fields, which
have sparse precision matrices [64]. Tapering and multi-
resolution approximations are two additional approaches,
developed for using Gaussian processes to analyze large
spatial datasets [65, 66]. Gaussian processes may also be
explicitly defined to have compactly-supported covari-
ance functions, as in [67]. This has the effect of intro-
ducing zeroes into the covariance matrix, so that it can
be efficiently manipulated using sparse matrix algorithms,
thereby subtantially reducing the computational costs.
The present study has focused on non-parametric

Bayesian modelling with Gaussian processes. Alternative
parametric models have also been implemented, with
splines, as applied in [27], particularly popular. The rela-
tion between splines and Gaussian processes has been
discussed in the literature before; see e.g. [11], Section 6.3
and [58], Section 15.4. In essence, a splines based model
is equivalent to the maximum a posterior (MAP) esti-
mate of a Gaussian process whose covariance matrix is
implicitly defined by the spline function and the spline
regularizer. This has two disadvantages. The covariance
matrix and hence the prior distribution in function space
is not explicitly under the modeller’s control. In fact,
[58], Section 15.4 provides examples of covariances matri-
ces induced by splines that are rather unnatural and
unsmooth. Moreover, the MAP estimate is a suboptimal
substitute for full Bayesian inference, which in particu-
lar does not capture posterior estimation and prediction
uncertainty. A practical advantage of splines over GPs is
the reduction in the computational complexity, which is
linear rather than cubic in the data set size. However, this
advantage will become less relevant when reducing the GP
computational complexity with the methods we employ
or through the use of sparse GPs [68], whose application
to animal movement modelling is a promising avenue for
future work.

Conclusions
The non-parametric nature of Gaussian process regres-
sion and the ability to model complex patterns through

covariance kernels that can be combined through addition
and multiplication [35], means arbitrary model structures
can be learned. For example, if learning a migration route
modelled as the mean of an Ornstein-Uhlenbeck pro-
cess movement model, as in [69], our approach allows
us to infer the mean location of the migration without
restricting it to a particular functional form.
By specifying different covariance kernels we can intro-

duce multiscale processes and periodicities into the
model, such as diurnal or annual patterns, and combina-
tions thereof.
The key advantages of probabilistic modelling with

Gaussian processes are their equivalence to continuous
time movement models, their non-parametric nature,
and the availability of GPU-accelerated libraries for their
implementation. Here we have demonstrated a multilayer
Gaussian process approach to animal movement mod-
elling that offers powerful and flexible inference of latent
movement parameters for large scale data sets.

Appendix
Synthetic data generation
For simulations used in Sections 3.1 and 3.2, we sim-
ulate animal movement as a 2-dimensional Ornstein-
Uhlenbeck process using the equation,

dxt = −νt (xt − mt) + σtdWt (15)

where Wt is a Weiner process and the parameters νt ,
σt and mt are time varying properties of the stochas-
tic process that correspond to the mean reversion rate,
the amplitude of the noise term, and the mean location
respectively. When simulating trajectories, we allow the
parameters of the Ornstein Uhlenbeck process to vary in
the following ways.
To model a diurnal periodic pattern of increased roam-

ing at certain points of the day (Section 3.1), the noise
amplitude σt is varied while all other parameters are held
fixed with νt = 12 and the mean at the origin. The noise
amplitude is created by modifying a sawtooth wave func-
tion with a 1-day period so that it increases linearly before
dropping sharply at around 5pm. The wave function is
then passed through a Gaussian smoother to obtain a
more realistic pattern of activity.
To simulate an annual North-South migration (Section

3.2) we allow the y-component of mean location μt to
periodically oscillate between high and low latitudes for a
single random walker. First, we create a smoothly oscillat-
ing function,

g(t) = 1 + cos (2π t)

√
1 + b2

1 + b2 cos2(2π t)
(16)

where b is a parameter that controls the smoothness of
the transition between end-points of themigration (we set
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b = 5) and t is measured in years. Next, we apply a slowly
varying factor to the migration to model a shifting route,

my
t = (5 − exp (−t/3)) g(t) (17)

with mx
t = 0. The result is a periodic seasonal migra-

tion with a Northern area that is gradually shifting further
North over several years. Figure S1 illustrates the result-
ing mean location of the migration route and an example
trajectory for a single year.

Empirical data
As part of an ongoing research project aimed at link-
ing behaviour and space use with individual fitness, an
entire flock of 60 merino sheep are being monitored
in a large enclosure of 700 hectares near Pilcaniyeu in
Northern Patagonia. Sheep have been equipped with GPS
devices attached to collars (CatLog-B, Perthold Engineer-
ing, www.perthold.de; USA) and programmed to acquire
locations every 10 min. 27 individuals with 2 months
of data were selected for analysis. Data was collected
between 20th May 2018 and 19th July 2018.

Simulation of inferred models for empirical data
Using the inferred latent lengthscales and amplitudes
from the sheep data, we simulated an equivalent Ornstein-
Uhlenbeck process over the course of 20,000 days, with
each day’s latent time-varying movement parameters
being a different draw from the posterior distribution over
the functions from the MCMC sampler.
The algorithm therefore involved making a single draw

from the posterior distribution of both the lengthscale
function and the amplitude function for each simulated
day. These sample functions were converted to the move-
ment parameters of the OU process by sampling the
functions at discrete timepoints corresponding to the
timesteps of the simulation. The velocity was then mod-
elling as an OU process that was updated at each timestep
using the parameter values for that timestep. Velocities
were then integrated to form a trajectory that was down
sampled to match the GPS collar schedule. We then com-
pared summary statistics from the simulations to the raw
data.
We looked at how well the model predicted the posi-

tional data from the GPS collars. We took the simulated
trajectories and divided them into a sequence of discrete
steps of 2 and 4 hours duration. We then compared the
distribution of step lengths and turn angles between simu-
lated and empirical data. Results are shown in Fig. S6. This
comparison shows that there is good agreement between
the distributions however the model underestimates the
tendency for individuals to move in diametrically opposite
headings. This is likely due to the effects of environmen-
tal features and site fidelity in the empirical data that the
model is unable to capture.

Supplementary Information
The online version contains supplementary material available at
https://doi.org/10.1186/s40462-021-00242-0.

Additional file 1: Figure S1: The simulated seasonal migration. (A) The
mean location of the migration as a function of time. Note, there is a
seasonal to-and-fro migration with a gradually shifting Northern range. (B)
An example trajectory for a single year. The outbound and inbound
movements of a single individual are shown in red and blue respectively.
Figure S2: Convergence diagnostics for sampler. Potential scale reduction
factor for 4 separate runs of 500 samples. (A-B) Raw whitened variables for
the lengthscale (red) and amplitude (blue) (C-D) Transformed variables
after Cholesky transformation for lengthscale (red) and amplitude (blue).
Potential scale reduction factor for the observation noise was computed as
1.005. Figure S3: Effective sample size for 2000 MCMC samples from 4
chains. Figure S4: Posterior distribution of observation error related to the
GPS locations. Figure S5: Posterior mean and 95% credible intervals of raw
latent functions (prior to exponential transformation). Low value regions
have high uncertainty as any movements in the trajectory in these periods
are attributed to observation error. (A) Log correlation length. (B) Log
velocity amplitude. Figure S6: Step lengths and turn angles from
simulated and empirical data. Data was divided into sequences of 2-hour
sections (A-B) and 4-hour sections (C-D). The distribution of lengths of
segments and turn angles between segments is shown.
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